Step 1: We can use symmetry to evaluate the integral. Let’s define:
\[
I = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx.
\]
Step 2: We can use the substitution \( x = \frac{\pi}{2} - t \). Then, \( dx = -dt \) and the limits of integration change as follows: when \( x = 0 \), \( t = \frac{\pi}{2} \), and when \( x = \frac{\pi}{2} \), \( t = 0 \).
Substituting into the integral:
\[
I = \int_{\frac{\pi}{2}}^0 \frac{\sqrt{\sin \left( \frac{\pi}{2} - t \right)}}{\sqrt{\sin \left( \frac{\pi}{2} - t \right)} + \sqrt{\cos \left( \frac{\pi}{2} - t \right)}} \, (-dt).
\]
Since \( \sin \left( \frac{\pi}{2} - t \right) = \cos t \) and \( \cos \left( \frac{\pi}{2} - t \right) = \sin t \), the integral becomes:
\[
I = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\cos t}}{\sqrt{\cos t} + \sqrt{\sin t}} \, dt.
\]
Step 3: Adding the original and transformed integrals:
\[
2I = \int_0^{\frac{\pi}{2}} \left( \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} + \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} \right) \, dx.
\]
The sum of the two fractions is 1, so:
\[
2I = \int_0^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2}.
\]
Thus:
\[
I = \frac{\pi}{4}.
\]