We are asked to find the value of the following determinant:
\[
\begin{vmatrix}
\cos \alpha & -\sin \alpha & 1 \\
\sin \alpha & \cos \alpha & 1 \\
\cos(\alpha + \beta) & -\sin(\alpha + \beta) & 1
\end{vmatrix}.
\]
Let's first expand this determinant along the third column.
\[
D = 1 \cdot \begin{vmatrix} \sin \alpha & \cos \alpha \\ \cos(\alpha + \beta) & -\sin(\alpha + \beta) \end{vmatrix}
- 1 \cdot \begin{vmatrix} \cos \alpha & -\sin \alpha \\ \cos(\alpha + \beta) & -\sin(\alpha + \beta) \end{vmatrix}
+ 1 \cdot \begin{vmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{vmatrix}.
\]
Now, calculate each 2x2 determinant:
1. First determinant:
\[
\begin{vmatrix} \sin \alpha & \cos \alpha\\ \cos(\alpha + \beta) & -\sin(\alpha + \beta) \end{vmatrix} = \sin \alpha (-\sin(\alpha + \beta)) - \cos \alpha \cos(\alpha + \beta) = -\sin \alpha \sin(\alpha + \beta) - \cos \alpha \cos(\alpha + \beta).
\]
Using the trigonometric identity \( \cos(x + y) = \cos x \cos y - \sin x \sin y \), we get:
\[
= -\cos(\alpha + \beta).
\]
2. Second determinant:
\[
\begin{vmatrix} \cos \alpha & -\sin \alpha \\ \cos(\alpha + \beta) & -\sin(\alpha + \beta) \end{vmatrix} = \cos \alpha (-\sin(\alpha + \beta)) - (-\sin \alpha) \cos(\alpha + \beta) = -\cos \alpha \sin(\alpha + \beta) + \sin \alpha \cos(\alpha + \beta).
\]
Using the identity \( \sin(x + y) = \sin x \cos y + \cos x \sin y \), we get:
\[
= \sin(\alpha + \beta).
\]
3. Third determinant:
\[
\begin{vmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{vmatrix} = \cos \alpha \cos \alpha - (-\sin \alpha) \sin \alpha = \cos^2 \alpha + \sin^2 \alpha = 1.
\]
Now, substitute all these results back into the original cofactor expansion:
\[
D = 1 \cdot (-\cos(\alpha + \beta)) - 1 \cdot (\sin(\alpha + \beta)) + 1 \cdot 1.
\]
Simplifying:
\[
D = -\cos(\alpha + \beta) - \sin(\alpha + \beta) + 1.
\]
This shows that the value of the determinant depends on \( \alpha \) and \( \beta \), but we observe that the value of the determinant is independent of \( \alpha \).
Step 2: Conclusion.
Therefore, the value of the determinant is independent of \( \alpha \), and the correct answer is (a).