To find the value of the determinant \(\begin{vmatrix} 1 & a & a^2\\ 1 & b & b^2\\ 1 & c & c^2 \end{vmatrix}\), we will calculate it step-by-step using the formula for a 3x3 determinant. The determinant of a 3x3 matrix \(\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix}\) is given by:
| \(x_1(y_2z_3 - y_3z_2) - x_2(y_1z_3 - y_3z_1) + x_3(y_1z_2 - y_2z_1)\) |
Here, we apply this formula to our matrix:
| \(= 1 \cdot (b \cdot c^2 - c \cdot b^2) - a \cdot (1 \cdot c^2 - 1 \cdot b^2) + a^2 \cdot (1 \cdot b - 1 \cdot c)\) |
Simplifying each term, we find:
| \(1 \cdot (b \cdot c^2 - c \cdot b^2) = bc^2 - cb^2\) |
| \(a \cdot (c^2 - b^2) = a(c+b)(c-b)\) |
| \(a^2 \cdot (b - c) = a^2(b - c)\) |
Substituting back, we have:
| \(= (bc^2 - cb^2) - a(c+b)(c-b) + a^2(b - c)\) |
This simplifies to:
| \(= bc^2 - cb^2 - a(c-cb)(c-b) + a^2(b-c)\) |
Continuing simplification:
| \(= bc^2 - cb^2 + a^2(b-c) - a(c^2-b^2)\) |
Recognizing differences and rearranging terms, we find:
| \(= (b-c)(c-a)(a-b)\) |
The determinant is:
| \((a-b)(b-c)(c-a)\) |
Thus, the correct answer is (a-b)(b-c)(c-a).