Question:

The value of tan[tan1(34)+tan1(23)] \tan \left[ \tan^{-1} \left( \frac{3}{4} \right) + \tan^{-1} \left( \frac{2}{3} \right) \right] is:

Show Hint

Use the sum of inverse tangent formula to simplify expressions with multiple inverse tangents.
Updated On: Mar 10, 2025
  • 176 \frac{17}{6}
  • 617 \frac{6}{17}
  • 176 -\frac{17}{6}
  • 611 -\frac{6}{11}
  • 1
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Using the identity for the sum of inverse tangents, we have: tan(tan1a+tan1b)=a+b1ab \tan \left( \tan^{-1} a + \tan^{-1} b \right) = \frac{a + b}{1 - ab} Substituting a=34 a = \frac{3}{4} and b=23 b = \frac{2}{3} : tan(tan1(34)+tan1(23))=34+231(34×23) \tan \left( \tan^{-1} \left( \frac{3}{4} \right) + \tan^{-1} \left( \frac{2}{3} \right) \right) = \frac{\frac{3}{4} + \frac{2}{3}}{1 - \left( \frac{3}{4} \times \frac{2}{3} \right)} Simplifying the numerator and denominator: =912+8121612=1712612=176 = \frac{\frac{9}{12} + \frac{8}{12}}{1 - \frac{6}{12}} = \frac{\frac{17}{12}}{\frac{6}{12}} = \frac{17}{6} Thus, the value is 176 \frac{17}{6} .
Was this answer helpful?
0
0