Given expression:
\(\tan^{-1} \left(\frac{7}{4} \right) - \tan^{-1} \left(\frac{3}{11} \right)\)
Using the identity:
\(\tan^{-1} A - \tan^{-1} B = \tan^{-1} \left(\frac{A - B}{1 + AB} \right)\), when \(AB < 1\)
Here, \(A = \frac{7}{4}\) and \(B = \frac{3}{11}\).
Calculating \(A - B\):
\(\frac{7}{4} - \frac{3}{11} = \frac{(7 \times 11) - (3 \times 4)}{4 \times 11}\)
\(= \frac{77 - 12}{44} = \frac{65}{44}\)
Calculating \(1 + AB\):
\(1 + \left(\frac{7}{4} \times \frac{3}{11}\right)\)
\(= 1 + \frac{21}{44}\)
\(= \frac{44}{44} + \frac{21}{44} = \frac{65}{44}\)
Using the identity:
\(\tan^{-1} \left(\frac{65}{44} \div \frac{65}{44} \right) = \tan^{-1} (1)\)
\(\tan^{-1} (1) = \frac{\pi}{4}\)
Thus, the correct answer is:
\(\frac{\pi}{4}\)
The value of $\int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx$ is equal to
Considering the principal values of the inverse trigonometric functions, $\sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right)$, $-\frac{1}{2}<x<\frac{1}{\sqrt{2}}$, is equal to