Step 1: Recall the relationship between Gibbs free energy and cell potential.
The formula is:
\[
\Delta G^\circ = -nFE^\circ_{\text{cell}}
\]
where,
- \(n\) = number of electrons transferred in the reaction = 2
- \(F\) = Faraday constant = \(96500 \, \text{C mol}^{-1}\)
- \(E^\circ_{\text{cell}}\) = standard electrode potential = \(1.1 \, \text{V}\)
Step 2: Substitute the values.
\[
\Delta G^\circ = - (2)(96500)(1.1)
\]
\[
\Delta G^\circ = -212300 \, \text{J mol}^{-1}
\]
\[
\Delta G^\circ = -212.3 \, \text{kJ mol}^{-1}
\]
Conclusion:
The standard Gibbs energy for the Daniell cell reaction is:
\[
\boxed{-212.3 \, \text{kJ mol}^{-1}}
\]