Given:
\(\sin^2 (\cos^{-1} (\frac{3}{5}))\)
Let \(\theta = \cos^{-1} (\frac{3}{5})\), so we have:
\(\cos \theta = \frac{3}{5}\)
Using the Pythagorean identity:
\(\sin^2 \theta + \cos^2 \theta = 1\)
Substituting \(\cos \theta = \frac{3}{5}\):
\(\sin^2 \theta + \left(\frac{3}{5}\right)^2 = 1\)
\(\sin^2 \theta + \frac{9}{25} = 1\)
\(\sin^2 \theta = 1 - \frac{9}{25}\)
\(\sin^2 \theta = \frac{25}{25} - \frac{9}{25}\)
\(\sin^2 \theta = \frac{16}{25}\)
Thus, the correct answer is:
\(\frac{16}{25}\)
Considering the principal values of the inverse trigonometric functions, $\sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right)$, $-\frac{1}{2}<x<\frac{1}{\sqrt{2}}$, is equal to
The value of $\int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx$ is equal to
The equation \[ 2 \cos^{-1} x = \sin^{-1} \left( 2 \sqrt{1 - x^2} \right) \] is valid for all values of \(x\) satisfying: