Given:
\(\sin^2 (\cos^{-1} (\frac{3}{5}))\)
Let \(\theta = \cos^{-1} (\frac{3}{5})\), so we have:
\(\cos \theta = \frac{3}{5}\)
Using the Pythagorean identity:
\(\sin^2 \theta + \cos^2 \theta = 1\)
Substituting \(\cos \theta = \frac{3}{5}\):
\(\sin^2 \theta + \left(\frac{3}{5}\right)^2 = 1\)
\(\sin^2 \theta + \frac{9}{25} = 1\)
\(\sin^2 \theta = 1 - \frac{9}{25}\)
\(\sin^2 \theta = \frac{25}{25} - \frac{9}{25}\)
\(\sin^2 \theta = \frac{16}{25}\)
Thus, the correct answer is:
\(\frac{16}{25}\)