Step 1: Use the test for conservativeness in $\mathbb{R^2$.}
For $\vec F=(M,N)$ on a simply connected domain, $\vec F$ is conservative iff
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}.
\]
Step 2: Compute the mixed partials.
\[
\frac{\partial M}{\partial y}
=\frac{\partial}{\partial y}\big(4x^{m}y^{2}-2xy^{m}\big)
=8x^{m}y-2m\,x\,y^{m-1}.
\]
\[
\frac{\partial N}{\partial x}
=\frac{\partial}{\partial x}\big(2x^{4}y-3x^{2}y^{2}\big)
=8x^{3}y-6xy^{2}.
\]
Step 3: Match coefficients and exponents for all $x,y$.
We require
\[
8x^{m}y-2m\,x\,y^{m-1}=8x^{3}y-6xy^{2} \text{for all }x,y.
\]
Comparing monomials gives
\[
m=3 \text{(from }x^{m}y \leftrightarrow x^{3}y\text{),}
\]
and then
\[
-2m=-6\ \Rightarrow\ m=3
\]
consistent with the second term ($x\,y^{m-1}\leftrightarrow x\,y^{2}$).
Final Answer:\fbox{$3$}