Step 1: Apply L'Hopital's Rule.
The given limit is of the indeterminate form \( \frac{0}{0} \). We can apply L'Hopital's Rule, which requires us to differentiate the numerator and the denominator.
The numerator is:
\[
f(x) = e^x - e^{-x} - 2x \quad \Rightarrow \quad f'(x) = e^x + e^{-x} - 2.
\]
The denominator is:
\[
g(x) = 1 - \cos(x) \quad \Rightarrow \quad g'(x) = \sin(x).
\]
Step 2: Evaluate the limit.
Now, compute the limit:
\[
\lim_{x \to 0} \frac{e^x + e^{-x} - 2}{\sin(x)} = \frac{2 - 2}{0} = 0.
\]
Thus, the correct answer is:
\[
\boxed{0}.
\]