We evaluate the integral: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\tan x + \sin x}{1 + \cos^2 x} \, dx. \] Step 1: Symmetry Property We check whether the function inside the integral is odd or even. Define: \[ f(x) = \frac{\tan x + \sin x}{1 + \cos^2 x}. \] Substituting \( x \to -x \): \[ f(-x) = \frac{\tan(-x) + \sin(-x)}{1 + \cos^2(-x)} = \frac{-\tan x - \sin x}{1 + \cos^2 x} = -f(x). \] Since \( f(-x) = -f(x) \), the function is odd. The integral of an odd function over a symmetric interval \( [-a, a] \) is always zero: \[ I = 0. \]
Final Answer: (A) 0.
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.