We evaluate the integral: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\tan x + \sin x}{1 + \cos^2 x} \, dx. \] Step 1: Symmetry Property We check whether the function inside the integral is odd or even. Define: \[ f(x) = \frac{\tan x + \sin x}{1 + \cos^2 x}. \] Substituting \( x \to -x \): \[ f(-x) = \frac{\tan(-x) + \sin(-x)}{1 + \cos^2(-x)} = \frac{-\tan x - \sin x}{1 + \cos^2 x} = -f(x). \] Since \( f(-x) = -f(x) \), the function is odd. The integral of an odd function over a symmetric interval \( [-a, a] \) is always zero: \[ I = 0. \]
Final Answer: (A) 0.
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals