We are asked to evaluate the double integral:
\[
I = \int_0^{\frac{\pi}{2}} \int_0^{\cos \theta} r \sin \theta \, dr \, d\theta.
\]
Step 1: Integrate with respect to \( r \)
First, perform the integration over \( r \). The inner integral is:
\[
\int_0^{\cos \theta} r \, dr = \frac{r^2}{2} \Big|_0^{\cos \theta} = \frac{\cos^2 \theta}{2}.
\]
Thus, the double integral becomes:
\[
I = \int_0^{\frac{\pi}{2}} \frac{\cos^2 \theta}{2} \sin \theta \, d\theta.
\]
Step 2: Simplify and integrate with respect to \( \theta \)
We now need to integrate:
\[
I = \frac{1}{2} \int_0^{\frac{\pi}{2}} \cos^2 \theta \sin \theta \, d\theta.
\]
We can use the substitution \( u = \cos \theta \), so \( du = -\sin \theta \, d\theta \). The limits change as follows:
- When \( \theta = 0 \), \( u = 1 \),
- When \( \theta = \frac{\pi}{2} \), \( u = 0 \).
The integral becomes:
\[
I = \frac{1}{2} \int_1^0 u^2 (-du) = \frac{1}{2} \int_0^1 u^2 \, du.
\]
Step 3: Evaluate the integral
Now, integrate:
\[
\int_0^1 u^2 \, du = \frac{u^3}{3} \Big|_0^1 = \frac{1}{3}.
\]
Thus, the value of the double integral is:
\[
I = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}.
\]
Therefore, the correct answer is Option (B).
Final Answer: (B) \( \frac{1}{6} \)