Use integration by parts:
Let
\[
u = \log(1+x), \qquad dv = x\, dx.
\]
Then
\[
du = \frac{1}{1+x} dx, \qquad v = \frac{x^2}{2}.
\]
Apply integration by parts:
\[
\int_0^1 x\log(1+x)\, dx
= \left[\frac{x^2}{2}\log(1+x)\right]_0^1
- \int_0^1 \frac{x^2}{2(1+x)}\, dx.
\]
First term at $x=1$:
\[
\frac{1}{2}\log 2.
\]
Zero at lower limit.
Now simplify integrand:
\[
\frac{x^2}{2(1+x)} = \frac{1}{2}(x - 1 + \frac{1}{1+x}).
\]
Thus:
\[
\int_0^1 x\log(1+x)\, dx
= \frac{1}{2}\log 2 - \frac{1}{2}\left[\int_0^1 x\,dx - \int_0^1 dx + \int_0^1 \frac{1}{1+x}dx \right].
\]
Evaluate each:
\[
\int_0^1 x\,dx = \frac{1}{2},
\qquad
\int_0^1 dx = 1,
\qquad
\int_0^1 \frac{1}{1+x}dx = \ln 2.
\]
Substitute:
\[
I = \frac{1}{2}\ln 2 - \frac{1}{2}\left(\frac{1}{2} - 1 + \ln 2\right)
= \frac{1}{2}\ln 2 - \frac{1}{2}\left(-\frac{1}{2} + \ln 2\right).
\]
\[
I = \frac{1}{2}\ln 2 + \frac{1}{4} - \frac{1}{2}\ln 2 = \frac{1}{4}.
\]
So:
\[
\boxed{0.25}
\quad (\text{acceptable range: } 0.25\text{–}0.25)
\]