We evaluate the integral: \[ I = \int_0^1 x(1 - x)^{10} \, dx. \] Step 1: Using Beta Function The given integral resembles the Beta function: \[ B(m+1, n+1) = \int_0^1 x^m (1-x)^n \, dx = \frac{m! \, n!}{(m+n+1)!}. \] Comparing, we identify \( m = 1 \) and \( n = 10 \), so: \[ I = B(2, 11) = \frac{1! \cdot 10!}{(2+11-1)!} = \frac{1 \cdot 10!}{12!}. \] Step 2: Simplifying Factorials Expanding factorials: \[ I = \frac{10!}{12 \times 11 \times 10!} = \frac{1}{12 \times 11} = \frac{1}{132}. \]
Final Answer: (B) \( \frac{1}{132} \).
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.