Step 1: Simplify the Numerator.
The numerator is:
\[
(2.3)^3 - 0.027
\]
Notice that \( 0.027 = (0.3)^3 \). So the numerator becomes:
\[
(2.3)^3 - (0.3)^3
\]
Use the identity:
\[
x^3 - y^3 = (x - y)(x^2 + xy + y^2)
\]
Here, \( x = 2.3 \) and \( y = 0.3 \). So:
\[
(2.3)^3 - (0.3)^3 = (2.3 - 0.3)((2.3)^2 + (2.3)(0.3) + (0.3)^2)
\]
Now simplify each term:
\[
2.3 - 0.3 = 2
\]
\[
(2.3)^2 + (2.3)(0.3) + (0.3)^2 = 5.29 + 0.69 + 0.09 = 6
\]
So the numerator is:
\[
2 \times 6 = 12
\]
Step 2: Simplify the Denominator.
The denominator is:
\[
(2.3)^2 + 0.69 + 0.09 = 5.29 + 0.78 = 6
\]
Step 3: Compute the Fraction.
Now evaluate:
\[
\frac{(2.3)^3 - 0.027}{(2.3)^2 + 0.69 + 0.09} = \frac{12}{6} = 2
\]
Step 4: Analyze the Options.
Option (1): \( 2 \) — Correct
Option (2): \( 3 \) — Incorrect
Option (3): \( 2.327 \) — Incorrect
Option (4): \( 2.273 \) — Incorrect
Step 5: Final Answer.
\[
(1) \quad \mathbf{2}
\]