Use the binomial expansion for small $x$:
\[
(1-x)^n = 1 - nx + \frac{n(n-1)}{2}x^2 + \cdots
\]
Then,
\[
(1-x)^n - 1 = -nx + O(x^2)
\]
So,
\[
\lim_{x\to 0} \frac{(1-x)^n - 1}{x}
= \lim_{x\to 0} \frac{-nx + O(x^2)}{x}
= -n
\]
Thus the limit equals $-n$.
Final Answer: $-n$