Step 1: Recall the trigonometric identity:
\[
\cos^2 \theta = \frac1 + \cos 2\theta2
\]
Step 2: Apply this to each term:
\[
\cos^2 x = \frac1 + \cos 2x2
\]
\[
\cos^2 \left(x + \frac\pi3\right) = \frac1 + \cos \left(2x + \frac2\pi3\right)2
\]
\[
\cos^2 \left(x - \frac\pi3\right) = \frac1 + \cos \left(2x - \frac2\pi3\right)2
\]
Step 3: Add them up:
\[
\cos^2 x + \cos^2 \left(x + \frac\pi3\right) + \cos^2 \left(x - \frac\pi3\right)
= \frac3 + \left[ \cos 2x + \cos \left(2x + \frac2\pi3\right) + \cos \left(2x - \frac2\pi3\right) \right]2
\]
Step 4: Use the identity:
\[
\cos(A + B) + \cos(A - B) = 2\cos A \cos B
\]
Here, $A = 2x$, $B = \frac2\pi3$:
\[
\cos \left(2x + \frac2\pi3\right) + \cos \left(2x - \frac2\pi3\right) = 2\cos(2x)\cos\left(\frac2\pi3\right)
\]
Step 5: Since $\cos\left(\frac2\pi3\right) = -\frac12$:
\[
= 2\cos(2x) \times \left(-\frac12\right) = -\cos(2x)
\]
Step 6: Therefore,
\[
\cos 2x + \left[ -\cos 2x \right] = 0
\]
The sum inside the bracket is zero.
Step 7: The total becomes:
\[
\frac3 + 02 = \frac32
\]
Thus, the value is $\mathbf\frac32$.