Question:

The value of \[ \begin{vmatrix} 8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3 \end{vmatrix} \textbf{is:} \]

Show Hint

To calculate the determinant of a \( 3 \times 3 \) matrix, expand along any row or column and simplify using \( 2 \times 2 \) minors.
  • \( 0 \)
  • \( 2 \)
  • \( 7 \)
  • \( -2 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Write the determinant
The determinant is: \[ \begin{vmatrix} 8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3 \end{vmatrix}. \] Step 2: Apply determinant expansion along the first row
Expanding along the first row: \[ \begin{vmatrix} 8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3 \end{vmatrix} = 8 \begin{vmatrix} 3 & 5 \\ 4 & 3 \end{vmatrix} - 2 \begin{vmatrix} 12 & 5 \\ 16 & 3 \end{vmatrix} + 7 \begin{vmatrix} 12 & 3 \\ 16 & 4 \end{vmatrix}. \] Step 3: Evaluate the \( 2 \times 2 \) minors
1. For \( \begin{vmatrix} 3 & 5 \\ 4 & 3 \end{vmatrix} \): \[ \begin{vmatrix} 3 & 5 \\ 4 & 3 \end{vmatrix} = (3)(3) - (5)(4) = 9 - 20 = -11. \] 2. For \( \begin{vmatrix} 12 & 5 \\ 16 & 3 \end{vmatrix} \): \[ \begin{vmatrix} 12 & 5 \\ 16 & 3 \end{vmatrix} = (12)(3) - (5)(16) = 36 - 80 = -44. \] 3. For \( \begin{vmatrix} 12 & 3 \\ 16 & 4 \end{vmatrix} \): \[ \begin{vmatrix} 12 & 3 \\ 16 & 4 \end{vmatrix} = (12)(4) - (3)(16) = 48 - 48 = 0. \] Step 4: Substitute back into the determinant
\[ \begin{vmatrix} 8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3 \end{vmatrix} = 8(-11) - 2(-44) + 7(0) = -88 + 88 + 0 = 0. \] Conclusion: The value of the determinant is \( 0 \).
Was this answer helpful?
0
0