Step 1: Apply Euler’s Method.
Euler’s method updates the value of \( y \) using:
\[
y_{n+1} = y_n + h \cdot f(x_n, y_n)
\]
Given:
\[
x_0 = 1, \quad y_0 = 2, \quad h = 0.1, \quad f(x, y) = -2xy^\alpha
\]
Step 2: Plug into the update formula.
\[
y_1 = y_0 + h \cdot (-2x_0 y_0^\alpha) = 2 + 0.1 \cdot (-2 \cdot 1 \cdot 2^\alpha)
= 2 - 0.2 \cdot 2^\alpha
\]
We are told that \( y_1 = y(1.1) = 1.2 \), so:
\[
1.2 = 2 - 0.2 \cdot 2^\alpha \quad \Rightarrow \quad 0.2 \cdot 2^\alpha = 0.8
\Rightarrow 2^\alpha = \frac{0.8}{0.2} = 4
\Rightarrow \alpha = 2
\]