\(\frac{\pi}{12}\)
\(\frac{\pi}{6}\)
The given integral is:
\[\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{dx}{1+\tan^{18}x}.\]
Let us simplify the denominator \(1+\tan^{18}x\). The integral's limits are symmetric about \(\frac{\pi}{4}\), and we use the property of symmetry for trigonometric functions:
\[f(x)=\frac{1}{1+\tan^{18}x}\]
Using the property \(\tan(\frac{\pi}{2}-x)=\cot(x)\):
\[f(\frac{\pi}{2}-x)=\frac{1}{1+\cot^{18}x}.\]
Adding both expressions:
\[f(x)+f(\frac{\pi}{2}-x)=\frac{1}{1+\tan^{18}x}+\frac{1}{1+\cot^{18}x}.\]
Simplify \(1+\cot^{18}x=\frac{\tan^{18}x+1}{\tan^{18}x}\):
\[f(x)+f(\frac{\pi}{2}-x)=\frac{\tan^{18}x}{\tan^{18}x+1}+\frac{1}{\tan^{18}x+1}=1.\]
Thus, the integral becomes:
\[\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{dx}{1+\tan^{18}x}=\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}1~dx.\]
Evaluate the integral:
\[\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}1~dx=[x]_{\frac{\pi}{6}}^{\frac{\pi}{3}}=\frac{\pi}{3}-\frac{\pi}{6}=\frac{\pi}{6}.\]
Thus:
\[\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{dx}{1+\tan^{18}x}=\frac{1}{2}\times \frac{\pi}{6}=\frac{\pi}{12}.\]
Final Answer:
\[\frac{\pi}{12}\]