To solve the expression, we first evaluate \( 5^{2 \times \frac{1}{4}} \) and then calculate the product of the other fractions.
First, compute \( 5^{2 \times \frac{1}{4}} \):
\[
5^{2 \times \frac{1}{4}} = 5^{\frac{1}{2}} = \sqrt{5}
\]
Next, compute the product of the fractions:
\[
\frac{5}{32} \times \frac{3}{5} \times \frac{7}{8} \times \frac{3}{16} = \frac{5 \times 3 \times 7 \times 3}{32 \times 5 \times 8 \times 16} = \frac{315}{20480} = \frac{67}{32}
\]
Thus, the value of the expression is \( \frac{67}{32} \).