We need to evaluate the expression:
\[ \frac{1}{\log_3{60}} + \frac{1}{\log_4{60}} + \frac{1}{\log_5{60}} \]
Step 1: Change of Base Formula
Using the logarithm identity \( \log_a b = \frac{\log b}{\log a} \), we rewrite each term:
\[ \frac{1}{\log_3{60}} = \frac{\log 3}{\log 60}, \quad \frac{1}{\log_4{60}} = \frac{\log 4}{\log 60}, \quad \frac{1}{\log_5{60}} = \frac{\log 5}{\log 60} \]
Step 2: Summation
Adding these terms:
\[ \frac{\log 3}{\log 60} + \frac{\log 4}{\log 60} + \frac{\log 5}{\log 60} \]
Factor out \( \frac{1}{\log 60} \):
\[ \frac{\log 3 + \log 4 + \log 5}{\log 60} \]
Step 3: Logarithm Properties
Using \( \log a + \log b = \log (a \times b) \):
\[ \log 3 + \log 4 + \log 5 = \log (3 \times 4 \times 5) = \log 60 \]
Thus, we get:
\[ \frac{\log 60}{\log 60} = 1 \]
Final Answer: 1
To find the value of \( \frac{1}{\log_3{60}} + \frac{1}{\log_4{60}} + \frac{1}{\log_5{60}} \), we start by using the change of base formula for logarithms:
\[ \frac{1}{\log_b{a}} = \log_a{b} \]
Applying this to each term, we have:
\[ \frac{1}{\log_3{60}} = \log_{60}{3} \]
\[ \frac{1}{\log_4{60}} = \log_{60}{4} \]
\[ \frac{1}{\log_5{60}} = \log_{60}{5} \]
Thus, combining these results, we get:
\[ \log_{60}{3} + \log_{60}{4} + \log_{60}{5} \]
Using the property of logarithms that states: \(\log_a{b} + \log_a{c} = \log_a{(b \cdot c)}\), we can combine these terms:
\[ \log_{60}{(3 \cdot 4 \cdot 5)} \]
Calculating the product, we have \(3 \cdot 4 \cdot 5 = 60\).
Thus, the expression simplifies to:
\[ \log_{60}{60} \]
Since \(\log_s{s} = 1\) for any \(s > 0\), we find that:
\[ \log_{60}{60} = 1 \]
Hence, the value of the given expression is \(1\).