Observe the following reactions:
\( AB(g) + 25 H_2O(l) \rightarrow AB(H_2S{O_4}) \quad \Delta H = x \, {kJ/mol}^{-1} \)
\( AB(g) + 50 H_2O(l) \rightarrow AB(H_2SO_4) \quad \Delta H = y \, {kJ/mol}^{-1} \)
The enthalpy of dilution, \( \Delta H_{dil} \) in kJ/mol\(^{-1}\), is:
Kc for the reaction \[ A(g) \rightleftharpoons T(K) + B(g) \] is 39.0. In a closed one-litre flask, one mole of \( A(g) \) was heated to \( T(K) \). What are the concentrations of \( A(g) \) and \( B(g) \) (in mol L\(^{-1}\)) respectively at equilibrium?
A sphere of radius R is cut from a larger solid sphere of radius 2R as shown in the figure. The ratio of the moment of inertia of the smaller sphere to that of the rest part of the sphere about the Y-axis is :
Predict the major product $ P $ in the following sequence of reactions:
(i) HBr, benzoyl peroxide
(ii) KCN
(iii) Na(Hg), $C_{2}H_{5}OH$
AB is a part of an electrical circuit (see figure). The potential difference \(V_A - V_B\), at the instant when current \(i = 2\) A and is increasing at a rate of 1 amp/second is:
The rate of a chemical reaction is defined as the change in concentration of any one of the reactants or products per unit time.
Consider the reaction A → B,
Rate of the reaction is given by,
Rate = −d[A]/ dt=+d[B]/ dt
Where, [A] → concentration of reactant A
[B] → concentration of product B
(-) A negative sign indicates a decrease in the concentration of A with time.
(+) A positive sign indicates an increase in the concentration of B with time.
There are certain factors that determine the rate of a reaction: