Step 1: Find point of intersection.
\[
3^x=5^x \Rightarrow \left(\frac{3}{5}\right)^x=1 \Rightarrow x=0
\]
Then:
\[
y=3^0=1
\]
Intersection point is \((0,1)\).
Step 2: Find slopes of tangents at intersection.
For \(y=3^x\):
\[
\frac{dy}{dx}=3^x\ln 3
\Rightarrow m_1=\ln 3 \ \text{at}\ x=0
\]
For \(y=5^x\):
\[
\frac{dy}{dx}=5^x\ln 5
\Rightarrow m_2=\ln 5 \ \text{at}\ x=0
\]
Step 3: Angle between curves formula.
\[
\tan\theta = \left|\frac{m_2-m_1}{1+m_1m_2}\right|
\]
Substitute:
\[
\tan\theta=\left|\frac{\ln 5-\ln 3}{1+\ln 3\ln 5}\right|
\]
Using base-10 logs (\(\ln a = 2.303\log a\)), constant cancels, so:
\[
\theta=\tan^{-1}\left(\frac{\log 3-\log 5}{1+\log 3\log 5}\right)
\]
Final Answer:
\[
\boxed{\tan^{-1}\left(\frac{\log 3-\log 5}{1+\log 3\log 5}\right)}
\]