Step 1: Write the general expansions.
Using the binomial theorem:
\[
(x+a)^{100} = \sum_{k=0}^{100} \binom{100}{k} x^{100-k} a^{k}
\]
\[
(x-a)^{100} = \sum_{k=0}^{100} \binom{100}{k} x^{100-k} (-a)^{k}
\]
Step 2: Add the two expansions.
\[
(x+a)^{100} + (x-a)^{100}
= \sum_{k=0}^{100} \binom{100}{k} x^{100-k} \left[a^{k} + (-a)^{k}\right]
\]
Step 3: Analyze the parity of powers of \(a\).
If \(k\) is odd: \(a^{k} + (-a)^{k} = 0\)
If \(k\) is even: \(a^{k} + (-a)^{k} = 2a^{k}\)
Hence, only terms with even powers of \(a\) survive.
Step 4: Count the surviving terms.
Even values of \(k\) from \(0\) to \(100\) are:
\[
0, 2, 4, \ldots, 100
\]
Number of even integers from \(0\) to \(100\):
\[
= \frac{100}{2} + 1 = 50 + 1 = 51
\]
Step 5: Final conclusion.
After simplification, the expansion contains \(\boxed{51}\) distinct terms.