In $18\, mL$, number of moles of
$H_{2} O=\frac{\text { mass of } H_{2} O}{\text { molecular mass }}$
$=\frac{\text { density } \times \text { velume }}{\text { molecular mass }}$
$=\frac{1 \times 18}{18}=1 mol$
$\because$ Number of moles of $H _{2} O$ in $1\, mol$
$=6.022 \times 10^{23}$
and number of $e^{-}$ in $1$ molecule of $H _{2} O$
$=1 \times 2+8=10$
$\therefore$ Number of $e^{-}$ in $1\, mole$ of $H _{2} O$
$=6.022 \times 10^{23} \times 10$
$=6.022 \times 10^{24}$