Step 1: Expanding the Binomial Expression
We use the binomial expansion for \( (a + b)^n \):
\[
\left( x - \frac{3}{x^2} \right)^{18} = \sum_{r=0}^{18} C_{18}^{r} x^{18-r} \left(-\frac{3}{x^2}\right)^r
\]
Simplifying the powers of \( x \):
\[
= \sum_{r=0}^{18} C_{18}^{r} (-3)^r x^{18 - r - 2r} = \sum_{r=0}^{18} C_{18}^{r} (-3)^r x^{18 - 3r}
\]
Step 2: Finding the Term Independent of \( x \)
The term independent of \( x \) will occur when the exponent of \( x \) is zero, i.e., when \( 18 - 3r = 0 \).
Solving for \( r \):
\[
r = 6
\]
Substituting \( r = 6 \) into the binomial expansion:
\[
C_{18}^{6} (-3)^6 = C_6 \cdot 3^6
\]
Step 3: Conclusion
Thus, the term independent of \( x \) is \( C_6 \cdot 3^{-6} \).