Step 1: Radiation heat transfer with a shield.
For a radiation shield between two plates at temperatures \( T_1 \) and \( T_2 \), the steady-state temperature \( T_s \) of the shield satisfies:
\[
T_s^4 = \frac{T_1^4 + T_2^4}{2}.
\]
Step 2: Substitute the given values.
Given:
\[
T_1 = 900 \, \text{K}, \quad T_2 = 300 \, \text{K}.
\]
Substitute into the equation:
\[
T_s^4 = \frac{900^4 + 300^4}{2}.
\]
Step 3: Calculate \( T_s^4 \).
\[
T_s^4 = \frac{(900)^4 + (300)^4}{2} = \frac{(6.561 \times 10^{10}) + (8.1 \times 10^8)}{2}.
\]
Simplify:
\[
T_s^4 = \frac{6.6421 \times 10^{10}}{2} = 3.32105 \times 10^{10}.
\]
Step 4: Solve for \( T_s \).
\[
T_s = \sqrt[4]{3.32105 \times 10^{10}} \approx 715 \, \text{K}.
\]
Step 5: Conclusion.
The steady-state temperature of the shield is \( 715 \, \text{K} \).