Step 1: Understanding the Concept:
We need to find the surface area of a solid of revolution. The curve is given in parametric form, and it is revolved around the y-axis. The formula for surface area in this case involves integrating \(2\pi x\) multiplied by the arc length element \(ds\).
Step 2: Key Formula or Approach:
The surface area \(S\) generated by revolving a parametric curve \(x(t), y(t)\) from \(t=a\) to \(t=b\) about the y-axis is:
\[ S = \int_a^b 2\pi x(t) \, ds \]
where the arc length element \(ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt\).
Step 3: Detailed Explanation:
1. Find Derivatives:
\( x = e^t \cos t \implies \frac{dx}{dt} = e^t\cos t - e^t\sin t = e^t(\cos t - \sin t) \)
\( y = e^t \sin t \implies \frac{dy}{dt} = e^t\sin t + e^t\cos t = e^t(\sin t + \cos t) \)
2. Find the Arc Length Element \(ds\):
\[ \left(\frac{dx}{dt}\right)^2 = e^{2t}(\cos^2 t - 2\sin t\cos t + \sin^2 t) = e^{2t}(1 - \sin(2t)) \]
\[ \left(\frac{dy}{dt}\right)^2 = e^{2t}(\sin^2 t + 2\sin t\cos t + \cos^2 t) = e^{2t}(1 + \sin(2t)) \]
\[ \left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = e^{2t}(1 - \sin(2t) + 1 + \sin(2t)) = 2e^{2t} \]
\[ ds = \sqrt{2e^{2t}} \, dt = \sqrt{2} e^t \, dt \]
3. Set up and Evaluate the Integral:
The integral for the surface area is:
\[ S = \int_{0}^{\pi/2} 2\pi (e^t \cos t) (\sqrt{2} e^t \, dt) = 2\sqrt{2}\pi \int_{0}^{\pi/2} e^{2t} \cos t \, dt \]
We use the standard integral formula: \( \int e^{at}\cos(bt) dt = \frac{e^{at}}{a^2+b^2}(a\cos(bt) + b\sin(bt)) \).
Here, a=2 and b=1.
\[ \int e^{2t} \cos t \, dt = \frac{e^{2t}}{2^2+1^2}(2\cos t + \sin t) = \frac{e^{2t}}{5}(2\cos t + \sin t) \]
Now evaluate the definite integral:
\[ \left[ \frac{e^{2t}}{5}(2\cos t + \sin t) \right]_{0}^{\pi/2} = \left(\frac{e^{\pi}}{5}(2\cos(\pi/2) + \sin(\pi/2))\right) - \left(\frac{e^{0}}{5}(2\cos(0) + \sin(0))\right) \]
\[ = \left(\frac{e^{\pi}}{5}(0 + 1)\right) - \left(\frac{1}{5}(2 + 0)\right) = \frac{e^{\pi}}{5} - \frac{2}{5} = \frac{e^\pi - 2}{5} \]
4. Calculate the Final Surface Area:
\[ S = 2\sqrt{2}\pi \left( \frac{e^\pi - 2}{5} \right) = \frac{2\sqrt{2}\pi}{5}(e^\pi - 2) \]
Step 4: Final Answer:
The surface area is \( \frac{2\sqrt{2}}{5}\pi(e^\pi - 2) \) sq. unit.