Step 1: Set up the surface-area integral.
For $z=f(x,y)$, surface area over domain $D$ is
\[
S=\iint_D \sqrt{1+f_x^2+f_y^2}\,dx\,dy.
\]
Here $f_x=2x,\ f_y=2y \Rightarrow \sqrt{1+f_x^2+f_y^2}=\sqrt{1+4(x^2+y^2)}$.
Step 2: Determine the projection domain.
$0\le z=x^2+y^2\le \tfrac14 \Rightarrow x^2+y^2\le \tfrac14$.
In polar coordinates $(r,\theta)$: $0\le r\le \tfrac12,\ 0\le \theta\le 2\pi$.
Step 3: Evaluate in polar coordinates.
\[
S=\int_0^{2\pi}\!\!\int_0^{1/2} \sqrt{1+4r^2}\, r\,dr\,d\theta
=2\pi\int_0^{1/2} r\sqrt{1+4r^2}\,dr.
\]
Let $u=1+4r^2 \Rightarrow du=8r\,dr$:
\[
S=2\pi . \frac{1}{8}\int_{u=1}^{2} u^{1/2}\,du
=\frac{\pi}{4}\left[\frac{2}{3}u^{3/2}\right]_{1}^{2}
=\frac{\pi}{6}\big(2^{3/2}-1\big)
=\frac{\pi}{6}\big(2\sqrt{2}-1\big).
\]
Final Answer:\fbox{$\dfrac{\pi}{6}\left(2\sqrt{2}-1\right)$}