Let \(r\) be the radius of the circle and \(a\) be the side of the square.
Then, we have:
\(2πr+4a=k\)(where \(k\) is constant)
\(⇒a=\frac{k-2πr}{4}\)
The sum of the areas of the circle and the square \((A)\) is given by,
\(A=πr^2+a^2=πr^2+\frac{(k-2πr)^2}{16}\)
\(∴\frac{dA}{dr}=2πr+\frac{2(k-2πr)(-2π)}{16}=2πr-\frac{π(k-2πr)}{4}\)
Now,\(\frac{dA}{dr}=0\)
\(⇒2πr=\frac{π(k-2πr)}{4}\)
\(8r=k-2πr\)
\(⇒(8+2π)r=k\)
\(⇒r=\frac{k}{8+2π}=\frac{k}{2(4+π)}\)
Now,\(\frac{d^2A}{dr^2}=2π+\frac{π^2}{2}>0\)
∴When \(r=\frac{k}{2(4π)},\frac{d^2A}{dr^2}>0\)
∴ The sum of the areas is least when \(r=\frac{k}{2(4π)}.\)
When \(r=\frac{k}{2(4π)},a=\frac{k-2π[\frac{k}{2(4π)}]}{4}\)
\(=\frac{k(4π)\,π\,\,k}{4\, 4(π)\,4}=\frac{4k}{4(π)4}=\frac{k}{π}=2r\)
Hence, it has been proved that the sum of their areas is least when the side of the square is double the radius of the circle.