Step 1: Understanding the Conditions
We are looking for 3-digit numbers \(N = 100a + 10b + c\) that satisfy the following conditions:
\(100 \le N \le 500\).
The digits \(a, b, c\) must be from the set D = \{0, 2, 3, 4, 5, 6, 7, 8, 9\}. The digit '1' is not allowed.
\(N\) is a multiple of 11.
From conditions 1 and 2, the first digit \(a\) can be 2, 3, or 4. The number 500 itself is not a multiple of 11, so we do not need to consider \(a=5\).
Step 2: Applying the Divisibility Rule of 11
For a 3-digit number \(abc\), the divisibility rule for 11 states that the alternating sum of its digits, \(a - b + c\), must be a multiple of 11 (i.e., 0, \(\pm\)11, \(\pm\)22, ...).
Let's find the possible range for \(a-b+c\):
Maximum value: With \(a=4\), \(c=9\), \(b=0\), we get \(4 - 0 + 9 = 13\).
Minimum value: With \(a=2\), \(c=0\), \(b=9\), we get \(2 - 9 + 0 = -7\).
Thus, the only possible values for \(a-b+c\) are 0 and 11.
Step 3: Finding all Possible Numbers
We enumerate the numbers based on the two cases for the divisibility rule.
Case 1: \(a - b + c = 0 \implies b = a + c\)
For \(a=2\): \(b=2+c\). The pairs (c,b) must not contain '1'. Possible pairs are (0,2), (2,4), (3,5), (4,6), (5,7), (6,8), (7,9). This gives the numbers: 220, 242, 253, 264, 275, 286, 297.
For \(a=3\): \(b=3+c\). Possible pairs (c,b) are (0,3), (2,5), (3,6), (4,7), (5,8), (6,9). This gives the numbers: 330, 352, 363, 374, 385, 396.
For \(a=4\): \(b=4+c\). Possible pairs (c,b) are (0,4), (2,6), (3,7), (4,8), (5,9). This gives the numbers: 440, 462, 473, 484, 495.
Case 2: \(a - b + c = 11 \implies b = a + c - 11\)
For \(a=2\): \(b=c-9\). Since \(b \ge 0\), \(c\) must be 9. This gives \(b=0\). Number: 209.
For \(a=3\): \(b=c-8\). \(c\) can be 8 or 9. If \(c=8\), \(b=0\). Number: 308. If \(c=9\), \(b=1\), which is not allowed.
For \(a=4\): \(b=c-7\). \(c\) can be 7, 8, or 9. If \(c=7\), \(b=0\). Number: 407. If \(c=8\), \(b=1\), not allowed. If \(c=9\), \(b=2\). Number: 429.
Step 4: Calculating the Sum
We have found all the required numbers. We will sum them directly.
Numbers starting with 2: \(220+242+253+264+275+286+297+209 = 2046\).
Numbers starting with 3: \(330+352+363+374+385+396+308 = 2508\).
Numbers starting with 4: \(440+462+473+484+495+407+429 = 3190\).
Total Sum = \(2046 + 2508 + 3190 = 7744\).
Alternatively, using the place value method for a more structured calculation:
List of numbers: 209, 220, 242, 253, 264, 275, 286, 297, 308, 330, 352, 363, 374, 385, 396, 407, 429, 440, 462, 473, 484, 495.
Sum of units digits (c): (9+0+2+3+4+5+6+7) + (8+0+2+3+4+5+6) + (7+9+0+2+3+4+5) = 36 + 28 + 30 = 94.
Sum of tens digits (b): (0+2+4+5+6+7+8+9) + (0+3+5+6+7+8+9) + (0+2+4+6+7+8+9) = 41 + 38 + 36 = 115.
Sum of hundreds digits (a): There are 8 numbers starting with 2, 7 numbers starting with 3, and 7 numbers starting with 4. Sum = \(8 \times 2 + 7 \times 3 + 7 \times 4 = 16 + 21 + 28 = 65\).
Total Sum = (Sum of hundreds digits) \(\times\) 100 + (Sum of tens digits) \(\times\) 10 + (Sum of units digits)
Total Sum = \(65 \times 100 + 115 \times 10 + 94\)
Total Sum = \(6500 + 1150 + 94 = 7744\).
Final Answer: The sum is 7744.