Einstein's photoelectric equation is $eV_s = \frac{hc}{\lambda} - \phi_0$, where $V_s$ is the stopping potential, $\lambda$ is the wavelength, and $\phi_0$ is the work function.
We have two conditions:
Condition 1: $e(0.710) = \frac{hc}{491} - \phi_0$. (Equation 1)
Condition 2: $e(1.43) = \frac{hc}{\lambda_2} - \phi_0$. (Equation 2)
Subtract Equation 1 from Equation 2 to eliminate the work function $\phi_0$:
$e(1.43 - 0.710) = \frac{hc}{\lambda_2} - \frac{hc}{491} = hc \left(\frac{1}{\lambda_2} - \frac{1}{491}\right)$.
$e(0.72) = hc \left(\frac{1}{\lambda_2} - \frac{1}{491}\right)$.
We can use the convenient value for $hc \approx 1240$ eV·nm. The equation becomes:
$0.72 \text{ eV} = 1240 \text{ eV·nm} \left(\frac{1}{\lambda_2} - \frac{1}{491 \text{ nm}}\right)$.
$\frac{0.72}{1240} = \frac{1}{\lambda_2} - \frac{1}{491}$.
$0.0005806 = \frac{1}{\lambda_2} - 0.0020367$.
$\frac{1}{\lambda_2} = 0.0005806 + 0.0020367 = 0.0026173$.
$\lambda_2 = \frac{1}{0.0026173} \approx 382.08$ nm.
The new wavelength is approximately 382 nm.