Step 1: General acceleration relation in rotating frames.
For a particle sliding along a rotating rod:
\[
\vec{a}_R = \vec{a}_{rel} + 2 \vec{\omega} \times \vec{v}_{rel} + \vec{\alpha} \times \vec{r} + \vec{\omega} \times (\vec{\omega} \times \vec{r})
\]
Here,
- \(\vec{a}_{rel} = 0\) (given),
- \(\alpha = 0\) (uniform angular speed),
- Only Coriolis and centripetal terms remain.
Step 2: Coriolis acceleration.
\[
a_{cor} = 2 \omega v_{rel} = 2 (15)(5) = 150 \, m/s^2
\]
Step 3: Centripetal acceleration.
\[
a_{c} = \omega^2 r = (15^2)(0.5) = 225 \times 0.5 = 112.5 \, m/s^2
\]
Step 4: Resultant acceleration.
These two are perpendicular (Coriolis tangential, centripetal radial). So:
\[
a = \sqrt{a_{cor}^2 + a_{c}^2} = \sqrt{150^2 + 112.5^2}
\]
\[
a = \sqrt{22500 + 12656.25} = \sqrt{35156.25} \approx 187.5 \, m/s^2
\]
Final Answer:
\[
\boxed{187.5 \, m/s^2}
\]