To calculate the equilibrium constant \( K_p \) from the standard free energy change \( \Delta G^\circ \), we use the equation:
\[
\Delta G^\circ = -RT \ln K_p
\]
where:
- \( \Delta G^\circ = -94600 + 89.37 \times T \),
- \( R = 8.314 \, {J/mol·K} \) is the universal gas constant,
- \( T = 1050 \, {K} \) is the temperature.
Step 1: Calculate \( \Delta G^\circ \) at \( T = 1050 \, {K} \)
Substituting the value of \( T = 1050 \, {K} \) into the expression for \( \Delta G^\circ \):
\[
\Delta G^\circ = -94600 + 89.37 \times 1050
\]
\[
\Delta G^\circ = -94600 + 93838.5 = -761.5 \, {J/mol}.
\]
Step 2: Use the equation to find \( K_p \)
Now, substitute \( \Delta G^\circ = -761.5 \, {J/mol} \) into the equation:
\[
-761.5 = -8.314 \times 1050 \ln K_p
\]
Solving for \( \ln K_p \):
\[
\ln K_p = \frac{-761.5}{-8.314 \times 1050} \approx 0.0906
\]
Exponentiating both sides:
\[
K_p = e^{0.0906} \approx 1.05.
\]
Thus, the equilibrium constant \( K_p \) at 1050 K is approximately \( 1.05 \).