In the complex present in Fehling’s reagent, Cu+2 ion is present.
So, spin only magnetic moment
\(= \sqrt{1(1+2)}\)
\(= \sqrt3 ≈ 2 \,\,B.M\)


In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below:
Magnetic force is the attraction or repulsion force that results from the motion of electrically charged particles. The magnets are attracted or repellent to one another due to this force. A compass, a motor, the magnets that hold the refrigerator door, train tracks, and modern roller coasters are all examples of magnetic power.
A magnetic field is generated by all moving charges, and the charges that pass through its regions feel a force. Depending on whether the force is attractive or repulsive, it may be positive or negative. The magnetism force is determined by the object's charge, velocity, and magnetic field.
Read More: Magnetic Force and Magnetic Field
The magnitude of the magnetic force depends on how much charge is in how much motion in each of the objects and how far apart they are.
Mathematically, we can write magnetic force as:
A charge will feel a force as it passes through a magnetic field at an angle. This force is given by the equation:

A force acts on the motion of charge q traveling with velocity v in a Magnetism field, and this force is: