In the complex present in Fehling’s reagent, Cu+2 ion is present.
So, spin only magnetic moment
\(= \sqrt{1(1+2)}\)
\(= \sqrt3 ≈ 2 \,\,B.M\)
The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ____. 
Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80
Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):

Magnetic force is the attraction or repulsion force that results from the motion of electrically charged particles. The magnets are attracted or repellent to one another due to this force. A compass, a motor, the magnets that hold the refrigerator door, train tracks, and modern roller coasters are all examples of magnetic power.
A magnetic field is generated by all moving charges, and the charges that pass through its regions feel a force. Depending on whether the force is attractive or repulsive, it may be positive or negative. The magnetism force is determined by the object's charge, velocity, and magnetic field.
Read More: Magnetic Force and Magnetic Field
The magnitude of the magnetic force depends on how much charge is in how much motion in each of the objects and how far apart they are.
Mathematically, we can write magnetic force as:
A charge will feel a force as it passes through a magnetic field at an angle. This force is given by the equation:

A force acts on the motion of charge q traveling with velocity v in a Magnetism field, and this force is: