Question:

The space inside a straight current carrying solenoid is filled with a magnetic material having magnetic susceptibility equal to 1.2 × 10–5. What is fractional increase in the magnetic field inside solenoid with respect to air as medium inside the solenoid?

Updated On: Mar 19, 2025
  • 1.2 × 10–5

  • 1.2 × 10–3

  • 1.8 × 10–3

  • 2.4 × 10–5

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The correct answer is (A) : 1.2 × 10–5
\(\stackrel{→}{B^′}=μ_0(1+X)ni\) in the material
\(\stackrel{→}{B}=μ_0ni\) without material
So fractional increase is
\(\frac{B^′−B}{B}=X=1.2×10^{−5}\)

Was this answer helpful?
0
0

Concepts Used:

Magnetic Field

The magnetic field is a field created by moving electric charges. It is a force field that exerts a force on materials such as iron when they are placed in its vicinity. Magnetic fields do not require a medium to propagate; they can even propagate in a vacuum. Magnetic field also referred to as a vector field, describes the magnetic influence on moving electric charges, magnetic materials, and electric currents.

A magnetic field can be presented in two ways.

  • Magnetic Field Vector: The magnetic field is described mathematically as a vector field. This vector field can be plotted directly as a set of many vectors drawn on a grid. Each vector points in the direction that a compass would point and has length dependent on the strength of the magnetic force.
  • Magnetic Field Lines: An alternative way to represent the information contained within a vector field is with the use of field lines. Here we dispense with the grid pattern and connect the vectors with smooth lines.

Properties of Magnetic Field Lines

  • Magnetic field lines never cross each other
  • The density of the field lines indicates the strength of the field
  • Magnetic field lines always make closed-loops
  • Magnetic field lines always emerge or start from the north pole and terminate at the south pole.