We are given the inequality:
\(|x-2| + |x+3| \ge 7\)
Consider the critical points where expressions inside absolute values change sign:
\(x = -3\) and \(x = 2\)
Case 1: \(x \ge 2\)
\(|x-2| = x-2,\quad |x+3| = x+3\)
So, \((x-2) + (x+3) \ge 7 \Rightarrow 2x + 1 \ge 7 \Rightarrow x \ge 3\)
Case 2: \(-3 \le x < 2\)
\(|x-2| = 2-x,\quad |x+3| = x+3\)
So, \((2-x) + (x+3) = 5\)
Since \(5 \not\ge 7\), no solution in this interval.
Case 3: \(x < -3\)
\(|x-2| = 2-x,\quad |x+3| = -(x+3)\)
So, \((2-x) + (-(x+3)) \ge 7 \Rightarrow -2x -1 \ge 7 \Rightarrow x \le -4\)
Combining all cases:
\(x \le -5 \quad \text{or} \quad x \ge 4\)
Final Solution Set:
\(\boxed{(-\infty,-5]\cup[4,\infty)}\)
If the given figure shows the graph of polynomial \( y = ax^2 + bx + c \), then: