Step 1: Rewrite the Given Differential Equation
We start with the given equation:
\[
x \frac{dy}{dx} - y = \sqrt{x^2 + y^2}
\]
Rearrange it into standard form:
\[
\frac{dy}{dx} = \frac{\sqrt{x^2 + y^2} + y}{x}
\]
Step 2: Transforming into a Suitable Form
Introduce a substitution:
\[
y = vx
\]
where \( v = \frac{y}{x} \), so that \( \frac{dy}{dx} = v + x \frac{dv}{dx} \).
Substituting into the differential equation:
\[
v + x \frac{dv}{dx} = \frac{\sqrt{x^2 + v^2 x^2} + v x}{x}
\]
Simplify:
\[
v + x \frac{dv}{dx} = \frac{\sqrt{x^2(1+v^2)} + v x}{x}
\]
\[
v + x \frac{dv}{dx} = \frac{x\sqrt{1+v^2} + v x}{x}
\]
\[
v + x \frac{dv}{dx} = \sqrt{1+v^2} + v
\]
Canceling \( v \) from both sides:
\[
x \frac{dv}{dx} = \sqrt{1+v^2}
\]
Step 3: Separating Variables and Integrating
Rearrange to separate \( v \) and \( x \):
\[
\frac{dv}{\sqrt{1+v^2}} = \frac{dx}{x}
\]
Integrating both sides:
\[
\int \frac{dv}{\sqrt{1+v^2}} = \int \frac{dx}{x}
\]
Using the standard integral formula:
\[
\ln |v + \sqrt{1+v^2}| = \ln |x| + C
\]
Step 4: Substituting Back \( v = \frac{y}{x} \)
\[
\ln \left| \frac{y}{x} + \sqrt{1+ \frac{y^2}{x^2}} \right| = \ln |x| + C
\]
\[
\frac{y}{x} + \sqrt{1 + \frac{y^2}{x^2}} = Cx
\]
Multiplying by \( x \) to clear fractions:
\[
y + \sqrt{x^2 + y^2} = C x^2
\]
Step 5: Finding the Constant \( C \)
Given \( y(\sqrt{3}) = 1 \), substitute \( x = \sqrt{3} \) and \( y = 1 \):
\[
1 + \sqrt{3 + 1} = C (3)
\]
\[
1 + 2 = 3C
\]
\[
C = 1
\]
Step 6: Final Solution
Substituting \( C = 1 \):
\[
y + \sqrt{x^2 + y^2} = x^2
\]