Step 1: Find \( \frac{dy}{dx} \)
\[
\frac{dx}{d\theta} = \cos\theta, \quad \frac{dy}{d\theta} = -2\sin 2\theta
\]
\[
\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{-2\sin 2\theta}{\cos\theta}
\]
Step 2: Evaluate at \( \theta = \frac{\pi}{6} \)
\[
\sin 2\theta = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}, \quad \cos\theta = \frac{\sqrt{3}}{2}
\]
\[
\frac{dy}{dx} = \frac{-2 \times \frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}} = -2
\]