Step 1: Equation of the circle
Given circle: $x^2 + y^2 = 9$ with center $O(0,0)$ and radius $r = 3$.
Step 2: Equation of tangent line
Let the tangent line passing through $P(3,4)$ have slope $m$.
Equation of the line: $y - 4 = m(x - 3)$ or $y = mx - 3m + 4$.
Step 3: Condition for tangency
Substitute $y$ in the circle equation:
\[
x^2 + (mx - 3m + 4)^2 = 9.
\]
Expanding:
\[
x^2 + m^2 x^2 - 2m x (3m - 4) + (3m - 4)^2 = 9,
\]
\[
(1 + m^2)x^2 - 2m(3m - 4) x + (3m - 4)^2 - 9 = 0.
\]
For the line to be tangent, the quadratic in $x$ has a single root, so the discriminant $D = 0$:
\[
D = [ -2m(3m - 4) ]^2 - 4 (1 + m^2) [ (3m - 4)^2 - 9 ] = 0.
\]
Simplify:
\[
4 m^2 (3m - 4)^2 - 4 (1 + m^2) [ (3m - 4)^2 - 9 ] = 0,
\]
Divide both sides by 4:
\[
m^2 (3m - 4)^2 = (1 + m^2) [ (3m - 4)^2 - 9 ].
\]
Step 4: Solve for $m$
Expand and simplify to find possible values of $m$:
\[
m^2 (3m - 4)^2 = (1 + m^2) ( (3m - 4)^2 - 9 ).
\]
Rearranged:
\[
m^2 (3m - 4)^2 = (3m - 4)^2 + m^2 (3m - 4)^2 - 9 - 9 m^2,
\]
\[
0 = (3m - 4)^2 - 9 - 9 m^2.
\]
Expanding $(3m -4)^2 = 9m^2 - 24m + 16$,
\[
0 = 9 m^2 - 24 m + 16 - 9 - 9 m^2,
\]
\[
0 = -24 m + 7,
\]
\[
24 m = 7,
\]
\[
m = \frac{7}{24}.
\]
Thus, the slope of the non-vertical tangent is $\frac{7}{24}$.