Let $ \mathbb{R} $ denote the set of all real numbers. Define the function $ f: \mathbb{R} \to \mathbb{R} $ by $$ f(x) = \begin{cases} 2 - 2x^2 - x^2 \sin\left(\frac{1}{x}\right), & \text{if } x \ne 0, \\ 2, & \text{if } x = 0. \end{cases} $$ Then which one of the following statements is TRUE?
A block of certain mass is placed on a rough floor. The coefficients of static and kinetic friction between the block and the floor are 0.4 and 0.25 respectively. A constant horizontal force \( F = 20 \, \text{N} \) acts on it so that the velocity of the block varies with time according to the following graph. The mass of the block is nearly (Take \( g = 10 \, \text{m/s}^2 \)):
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is
f(x) is said to be differentiable at the point x = a, if the derivative f ‘(a) be at every point in its domain. It is given by
Mathematically, a function is said to be continuous at a point x = a, if
It is implicit that if the left-hand limit (L.H.L), right-hand limit (R.H.L), and the value of the function at x=a exist and these parameters are equal to each other, then the function f is said to be continuous at x=a.
If the function is unspecified or does not exist, then we say that the function is discontinuous.