For \(f(x)\) to be well-defined, we require:
Let \(y = |x|\). Then \(y \ge 0\). The inequality becomes \( \frac{y-2}{y-3} \ge 0 \).
The critical points for this inequality are \(y=2\) and \(y=3\).
We analyze the sign of the expression \( \frac{y-2}{y-3} \) in different intervals:
Combining the conditions where \( \frac{y-2}{y-3} \ge 0 \), we have \(y \le 2\) or \(y > 3\).
Substituting back \(y = |x|\):
The set of all real values of \(x\) is the union of these intervals: \[ (-\infty, -3) \cup [-2, 2] \cup (3, \infty) \] This can be written as: \[ \mathbb{R} - ([-3, -2) \cup (2, 3]) \] \[ \boxed{\mathbb{R} - ([-3, -2) \cup (2, 3])} \]
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Statement-I: In the interval \( [0, 2\pi] \), the number of common solutions of the equations
\[ 2\sin^2\theta - \cos 2\theta = 0 \]
and
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
is two.
Statement-II: The number of solutions of
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
in \( [0, \pi] \) is two.