For \(f(x)\) to be well-defined, we require:
Let \(y = |x|\). Then \(y \ge 0\). The inequality becomes \( \frac{y-2}{y-3} \ge 0 \).
The critical points for this inequality are \(y=2\) and \(y=3\).
We analyze the sign of the expression \( \frac{y-2}{y-3} \) in different intervals:
Combining the conditions where \( \frac{y-2}{y-3} \ge 0 \), we have \(y \le 2\) or \(y > 3\).
Substituting back \(y = |x|\):
The set of all real values of \(x\) is the union of these intervals: \[ (-\infty, -3) \cup [-2, 2] \cup (3, \infty) \] This can be written as: \[ \mathbb{R} - ([-3, -2) \cup (2, 3]) \] \[ \boxed{\mathbb{R} - ([-3, -2) \cup (2, 3])} \]
Let \( f(x) = \log x \) and \[ g(x) = \frac{x^4 - 2x^3 + 3x^2 - 2x + 2}{2x^2 - 2x + 1} \] Then the domain of \( f \circ g \) is: