Step 1: Formula for total surface area of a cone
The total surface area of a right circular cone is given by:
\[
A = \pi r (r + l),
\]
where \( r \) is the radius and \( l \) is the slant height.
Since the semi-vertical angle is \( 45^\circ \), we have:
\[
\tan 45^\circ = \frac{r}{h} = 1 \Rightarrow r = h.
\]
Using the Pythagorean theorem:
\[
l = \sqrt{r^2 + h^2} = \sqrt{r^2 + r^2} = \sqrt{2} r.
\]
Thus, the total surface area is:
\[
A = \pi r (r + \sqrt{2} r) = \pi r^2 (1 + \sqrt{2}).
\]
Step 2: Approximate error in surface area
The error in total surface area is given by:
\[
dA = \frac{dA}{dr} \cdot dr.
\]
Differentiating \( A \) with respect to \( r \):
\[
\frac{dA}{dr} = 2\pi r (1 + \sqrt{2}).
\]
Substituting \( r = 14 \) cm:
\[
\frac{dA}{dr} = 2\pi (14) (1 + \sqrt{2}).
\]
The given error in radius is:
\[
dr = \frac{\sqrt{2} - 1}{11}.
\]
Thus, the approximate error in area is:
\[
dA = 2\pi (14) (1 + \sqrt{2}) \times \frac{\sqrt{2} - 1}{11}.
\]
Evaluating, we get:
\[
dA \approx 8 \text{ sq. cm}.
\]
Step 3: Conclusion
Thus, the final answer is:
\[
\boxed{8}.
\]