Step 1: The energy stored in an inductor is given by the formula: \[ E = \frac{1}{2} L I^2, \] where \( L \) is the inductance and \( I \) is the current.
Step 2: The change in energy is the difference in energy stored before and after the change in current. \[ \Delta E = \frac{1}{2} L \left( I_2^2 - I_1^2 \right), \] where \( I_1 = 10 \, {A} \) and \( I_2 = 25 \, {A} \).
Step 3: To calculate \( L \), we use the given self-induced emf formula: \[ \mathcal{E} = L \frac{\Delta I}{\Delta t}, \] where \( \mathcal{E} = 25 \, {V} \), \( \Delta I = 25 - 10 = 15 \, {A} \), and \( \Delta t = 1 \, {s} \). \[ 25 = L \times \frac{15}{1} \quad \Rightarrow \quad L = \frac{25}{15} = \frac{5}{3} \, {H}. \]
Step 4: Now, substitute \( L = \frac{5}{3} \) H, \( I_1 = 10 \) A, and \( I_2 = 25 \) A into the energy formula: \[ \Delta E = \frac{1}{2} \times \frac{5}{3} \times \left( 25^2 - 10^2 \right) = \frac{1}{2} \times \frac{5}{3} \times \left( 625 - 100 \right) = \frac{5}{6} \times 525 = 437.5 \, {J}. \]
A | B | Y |
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 1 |
1 | 1 | 0 |