Step 1: Reduce to the standard sine–cosine form.
Let $\mu^2=\lambda-3$. Then the ODE becomes
\[
y'' + \mu^2 y = 0.
\]
General solution:
\[
y(x)=A\cos(\mu x)+B\sin(\mu x).
\]
Step 2: Apply boundary conditions.
$y(0)=0 \Rightarrow A=0$; hence $y(x)=B\sin(\mu x)$.
$y(\pi)=0 \Rightarrow B\sin(\mu \pi)=0$. For a nontrivial solution ($B\neq 0$), we need
\[
\sin(\mu \pi)=0 \Rightarrow \mu = n, n=1,2,3,\ldots
\]
Step 3: Recover $\lambda_n$.
Since $\mu^2=\lambda-3$,
\[
\lambda_n = \mu^2 + 3 = n^2 + 3,\qquad n=1,2,3,\ldots
\]
Thus the eigenvalues in increasing order are
\[
\lambda_1=1^2+3=4, \lambda_2=2^2+3=7, \lambda_3=3^2+3=12,\ldots
\]
The {second smallest} is $\lambda_2=7$.
Final Answer:
\[
\boxed{7}
\]