Step 1: Geostrophic current formula.
Geostrophic speed is proportional to the horizontal pressure gradient, here represented by the slope of sea surface height:
\[
V_g \propto \frac{\Delta h}{\Delta x}
\]
where \(\Delta h\) is the height difference between isolines, and \(\Delta x\) is their separation.
Step 2: Compute slope for each case.
- Case (i): \(L1=20,\ L2=30,\ \Delta h=10~\mathrm{cm}=0.1~\mathrm{m},\ \Delta x=200~\mathrm{km}=2\times 10^5~\mathrm{m}\).
\[
\frac{\Delta h}{\Delta x} = \frac{0.1}{2\times 10^5} = 5\times 10^{-7}.
\]
- Case (ii): \(L1=10,\ L2=20,\ \Delta h=10~\mathrm{cm}=0.1~\mathrm{m},\ \Delta x=300~\mathrm{km}=3\times 10^5~\mathrm{m}\).
\[
\frac{\Delta h}{\Delta x} = \frac{0.1}{3\times 10^5} = 3.3\times 10^{-7}.
\]
- Case (iii): \(L1=5,\ L2=15,\ \Delta h=10~\mathrm{cm}=0.1~\mathrm{m},\ \Delta x=100~\mathrm{km}=1\times 10^5~\mathrm{m}\).
\[
\frac{\Delta h}{\Delta x} = \frac{0.1}{1\times 10^5} = 1.0\times 10^{-6}.
\]
Step 3: Compare values.
- (iii): \(1.0\times 10^{-6}\) (largest)
- (i): \(5.0\times 10^{-7}\) (second)
- (ii): \(3.3\times 10^{-7}\) (smallest)
So the order is: (iii)>(i)>(ii).
Final Answer:
\[
\boxed{(iii)>(i)>(ii)}
\]