Step 1: The root mean square speed (\( v_{{rms}} \)) of particles in Brownian motion is given by the equation:
\[
v_{{rms}} = \sqrt{\frac{3kT}{m}}
\]
where:
- \( k = 1.38 \times 10^{-23} \, {JK}^{-1} \) is the Boltzmann constant,
- \( T \) is the temperature in Kelvin,
- \( m = 5 \times 10^{-17} \, {kg} \) is the mass of the smoke particle.
Step 2: Since the temperature at NTP (Normal Temperature and Pressure) is \( T = 273 \, {K} \), we can substitute these values into the equation.
\[
v_{{rms}} = \sqrt{\frac{3 \times (1.38 \times 10^{-23}) \times 273}{5 \times 10^{-17}}}
\]
Step 3: Simplify the expression:
\[
v_{{rms}} = \sqrt{\frac{1.242 \times 10^{-20}}{5 \times 10^{-17}}}
\]
\[
v_{{rms}} = \sqrt{2.484 \times 10^{-4}} = 0.0157 \, {m/s}
\]
Converting to millimeters per second:
\[
v_{{rms}} = 15.7 \, {mm/s} \approx 15 \, {mm/s}.
\]
Thus, the root mean square speed is approximately \( 15 \, {mm/s} \).