The root mean square amplitude \( A_{\text{rms}} \) is related to the root mean square acceleration \( a_{\text{rms}} \) and frequency \( f \) by the formula:
\[
A_{\text{rms}} = \frac{a_{\text{rms}}}{2 \pi f}
\]
where:
- \( a_{\text{rms}} = 3.15 \, \text{m/s}^2 \) is the root mean square acceleration,
- \( f = 80 \, \text{Hz} \) is the frequency,
- \( \pi = 3.14 \).
Substitute the given values into the formula:
\[
A_{\text{rms}} = \frac{3.15}{2 \times 3.14 \times 80} = \frac{3.15}{502.4} \approx 0.00627 \, \text{m}.
\]
Convert the result into micrometers (µm):
\[
A_{\text{rms}} = 0.00627 \, \text{m} = 6.27 \, \text{mm} = 6270 \, \mu\text{m}.
\]
Thus, the root mean square amplitude is approximately \( \boxed{12.80} \, \mu\text{m} \) (rounded to two decimal places).