Step 1: Given information
We are given the following values:
- \( R = 20 \, \Omega \) (resistance of the wire),
- \( l = 100 \, \text{m} \) (length of the wire),
- radius \( r = 5 \, \text{mm} = 0.005 \, \text{m} \) (radius of the wire).
Step 2: Calculate the area of the cross-section of the wire
The wire has a circular cross-section, so we use the formula for the area of a circle:
\[
A = \pi r^2
\]
Substituting the value of the radius \( r = 0.005 \, \text{m} \):
\[
A = \pi (0.005)^2 = 2.5 \pi \times 10^{-5} \, \text{m}^2
\]
Step 3: Use the formula for resistivity
The formula for resistivity is:
\[
\rho = \frac{R A}{l}
\]
Substitute the given values for \( R = 20 \, \Omega \), \( A = 2.5 \pi \times 10^{-5} \, \text{m}^2 \), and \( l = 100 \, \text{m} \):
\[
\rho = \frac{20 \times 2.5 \pi \times 10^{-5}}{100}
\]
Step 4: Simplify the expression
\[
\rho = 5 \pi \times 10^{-6} \, \Omega \cdot \text{m}
\]
Step 5: Final answer
Therefore, the resistivity of the metal is approximately:
\[
\rho \approx 5 \pi \times 10^{-6} \, \Omega \cdot \text{m}
\]